Affective Neuroscience, Functional Connectivity Emotions Brain Rhythms and Connectivity - Human Connectome, NIRS fNIRS analysis, EEG Data Analysis, ICA, FFT, Wavelets, LORETA
03/11/2023 at 02:11:37
Author: Jackson Cionek
03/11/2023 at 02:11:37
Author: Jackson Cionek
Uso da Indignação na manipulação da Percepção, Consciência e do Senso Crítico
A conectividade funcional refere-se à integração e comunicação entre diferentes regiões do cérebro que compartilham funções ou se ativam juntas durante uma tarefa ou estado de repouso. No contexto das emoções e dos ritmos cerebrais, a conectividade funcional é um conceito importante na neurociência afetiva, que estuda como as emoções são processadas no cérebro.
Os ritmos cerebrais, também conhecidos como ondas cerebrais, são padrões de atividade neuronal que podem ser medidos por técnicas como a eletroencefalografia (EEG). Existem diferentes tipos de ondas cerebrais, como delta, teta, alfa, beta e gama, cada uma associada a diferentes estados de consciência e atividades cognitivas. Aqui está como eles podem se relacionar com emoções e conectividade funcional:
Delta (1-4 Hz): Geralmente associado ao sono profundo, as ondas delta também têm sido implicadas em processos de tomada de decisão e reconhecimento de emoções.
Teta (4-7 Hz): Associado com sonhos lúcidos, meditação, criatividade e memória. Flutuações nas ondas teta podem indicar processamento emocional durante experiências significativas ou estados de memória.
Alfa (8-12 Hz): Frequentemente ligado ao relaxamento, estados de calma e repouso. Reduções na atividade alfa podem sinalizar atenção direcionada ou engajamento emocional.
Beta (12-30 Hz): Associado a estados de alerta, concentração, e atividades cognitivas. Altos níveis de ondas beta podem estar relacionados ao estresse ou ansiedade.
Gama (30-100 Hz ou mais): Estas são as ondas mais rápidas e têm sido associadas à integração de informações sensoriais e cognitivas, processamento de alta ordem e possivelmente à consciência.
Em relação às emoções, diferentes regiões cerebrais, como a amígdala, o córtex pré-frontal e o insular, são conhecidos por participarem na regulação e processamento emocional. A conectividade entre essas regiões pode ser afetada pelo estado emocional de uma pessoa.
Por exemplo, quando uma pessoa está experimentando medo, a amígdala, que é uma região chave na resposta ao medo, torna-se muito ativa e aumenta a sua conectividade com outras regiões do cérebro envolvidas na resposta de estresse e na tomada de decisão. Durante a felicidade ou contentamento, pode-se observar um padrão diferente de conectividade, possivelmente envolvendo mais o córtex pré-frontal ventromedial e outras áreas associadas ao sistema de recompensa do cérebro.
Técnicas de neuroimagem funcional, como a ressonância magnética funcional (fMRI) e a magnetoencefalografia (MEG), são comumente usadas para estudar a conectividade funcional do cérebro. Estas técnicas permitem aos pesquisadores visualizar como diferentes áreas do cérebro comunicam-se durante diferentes tarefas e estados emocionais.
Os estudos de conectividade funcional têm potencial para melhorar nossa compreensão dos distúrbios psiquiátricos e neurológicos, onde a regulação emocional é muitas vezes afetada, como na depressão, ansiedade e transtorno de estresse pós-traumático (TEPT). Ao entender melhor como as emoções afetam a conectividade cerebral, os pesquisadores podem desenvolver terapias mais eficazes para essas condições.
Affective neuroscience is the study of the neural mechanisms underlying emotions. It combines principles and methods from psychology, neuroscience, and cognitive science to investigate how brain processes result in emotional experiences. Non-invasive brain imaging techniques are crucial for this field, with functional Near-Infrared Spectroscopy (fNIRS) being one of the tools used to study brain activity.
fNIRS is a neuroimaging technique that measures brain activity by detecting changes in blood hemoglobin concentrations, which are indicative of neural activation. Unlike functional Magnetic Resonance Imaging (fMRI), fNIRS uses light in the near-infrared spectrum to measure these changes. fNIRS is particularly advantageous in affective neuroscience for several reasons:
Portability:
fNIRS devices are often more portable than fMRI machines, allowing studies in more naturalistic settings outside of the lab.
Tolerance for Movement:
fNIRS is less sensitive to movement artifacts than fMRI, making it more suitable for experiments where participants are not completely still.
Cost:
fNIRS is generally less expensive than fMRI, both in terms of equipment costs and maintenance.
Temporal Resolution:
fNIRS has relatively good temporal resolution, which is beneficial for measuring the fast dynamics of emotional processing.
Designing a neuroscience experiment with fNIRS to study affective processes involves several key steps:
Define the Research Question and Hypotheses
Decide on the aspect of emotions you want to study, such as the neural correlates of emotion regulation, emotional reactivity to stimuli, or social emotional interactions.
Select the Emotional Stimuli
Choose stimuli that reliably elicit the emotional states you want to investigate. This could be images, videos, sounds, or even olfactory stimuli.
Determine the Experimental Design
Decide whether you will use a block design, where emotional and neutral stimuli are presented in large blocks, or an event-related design, where stimuli are presented in a random or semi-random sequence.
Consider Participant Comfort and Safety
Ensure that participants are comfortable with the stimuli and that the experimental design does not cause undue stress or harm.
Establish Baseline Measurements
Measure baseline brain activity before introducing emotional stimuli to have a reference point for comparing changes in brain activity.
Data Acquisition Protocol
Develop a detailed protocol for the use of fNIRS, including sensor placement, calibration procedures, and instructions for participants.
Include Control Conditions
Include neutral stimuli and conditions to distinguish the specific brain regions associated with emotional processing from general cognitive processes.
Data Analysis
Decide on the methods for preprocessing (e.g., filtering, correcting for motion artifacts) and analyzing the fNIRS data, including statistical approaches to determine significant changes in hemodynamic responses.
Ethical Considerations
Obtain ethical approval from relevant committees and ensure informed consent, particularly because affective experiments can evoke strong emotional responses.
Pilot Testing
Conduct a pilot study to refine the experimental procedure, stimuli, and data analysis techniques.
Experiment Execution
Carry out the experiment, making sure that participants are randomly assigned to conditions and that the experimenter is blinded to conditions when possible to prevent bias.
Data Interpretation and Reporting
Analyze the data according to your pre-established plan, interpret the findings in the context of your hypotheses, and prepare to report the results, being transparent about the methods and any issues encountered.
fNIRS, with its unique advantages, has been used to study a wide range of emotional processes, including responses to affective stimuli, the effects of mood disorders, and social interactions. While it does not have the spatial resolution of fMRI, its utility in a more naturalistic setting and its relative affordability make it a valuable tool in the arsenal of affective neuroscience.
EEG Data Analysis | TheNeuroSoft
Recording, Analysis, Presentation and Stimulus Software EEG fMRI, NIRS fNIRS, TMS, tDCS tACS, MEG, Eye Tracking and VideoSyncThe analysis software for EEG ERP P300 N400 research, Video integration, Raw Data Inspection, interactive ICA, FFT, Wavelets, LORETA, MR and CB artifact correction, Integration for eye-tracking data,CSD Current Source Density, Grand Average, Grand Segmentation, ERS/ERD Event-related synchronization and desynchronization, FFT Fast Fourier Transform, FFT Inverse, ICA Independent Component Analysis, Inverse ICA,Butterworth filter, Linear Derivation, LORETA for source analysis, Ocular Correction ICA based on ICA, PCA Principal Component Analysis, Segmentation,Topographic Interpolation, t-Test paired and unpaired t-Tests, Wavelets, Wavelet ExtractionFunctionalNIRS near-infrared spectroscopy (fNIRS) NIRS infrared spectroscopy - Turbo-Satori: NIRS Real-time analysis software, Fully customized analysis pipeline,Capable of calculating changes in oxy- and deoxy-hemoglobin, concentrations followed by block averages, GLM, SVM classification and statistics, Topographic channel selection, Real-time statistics including T-values, Beta values, channel correlation and averages, Short distance channel support, Heartbeat detection/Heart rate calculation
NIRS fNIRS analysis | TheNeuroSoft
Neuroscience Experiments Design | Design of Experiments DOE
EEG NIRS Experimental Design NIRS fNIRS BCIScientific Question, Physical Principles and Experimental Designs EEG-fMRI EEG-MicroStates EEG ERP BCI FFT P300 N400 Scientific Question, Physical Principles and Experimental Designs
Functional Connectivity | Functional Connectivity
Functional Connectivity
Ritmos Cerebrais e Conectividade | Functional Connectivity
Functional Connectivity
Human Connectome | Functional Connectivity
Functional Connectivity
Amazing Science Toys | NeuroMagic
Optical Illusions | NeuroMagic
Those who do that use combinations of colors, lights, or particular patterns that can really trick the brain. So get ready to check your visual perception with this fun challenge! Some of these illusions were interpreted a long time ago, while others will challenge your brain and still won’t give a logical explanation. These awesome pictures will mess with your eyes and mind, making you believe things aren’t what they seem!An Audio Illusion that gets you freaked out.
![]() | 08:30:00 - 11:59:00 Functional Connectivity |
![]() | 11:59:00 - 13:58:00 Functional Connectivity |
![]() | 13:58:00 - 19:32:00 Functional Connectivity |
![]() | 19:32:00 - 22:17:00 Those who do that use combinations of colors, lights, or particular patterns that can really trick the brain. So get ready to check your visual perception with this fun challenge! Some of these illusions were interpreted a long time ago, while others will challenge your brain and still won’t give a logical explanation. These awesome pictures will mess with your eyes and mind, making you believe things aren’t what they seem!An Audio Illusion that gets you freaked out. |
![]() | 22:17:00 - 23:59:00 Those who do that use combinations of colors, lights, or particular patterns that can really trick the brain. So get ready to check your visual perception with this fun challenge! Some of these illusions were interpreted a long time ago, while others will challenge your brain and still won’t give a logical explanation. These awesome pictures will mess with your eyes and mind, making you believe things aren’t what they seem!An Audio Illusion that gets you freaked out. |